Всё сочувствие, на которое мы решились
 

Как сделать биоразлагаемый пластик действительно биоразлагаемым

С каждым годом в мире производится всё больше пластика. И всё больше пластика отправляется на свалку вместе с другими отходами.

Как сделать биоразлагаемый пластик действительно биоразлагаемым

Какое-то его количество попадает во вторичную переработку, но существенная часть полимерных отходов вместе с пищевым мусором оказывается погребённой на мусорных полигонах. Обычные полимерные материалы, вроде полиэтилена или полипропилена, не разлагаются от слова совсем и способны столетиями пролежать в почве без каких-либо качественных изменений. Но можно ли сделать так, чтобы пластик гнил?

Можно, хотя с этим не всё так гладко, как хотелось бы. Вместо условно вечного полиэтилена можно взять биоразлагаемый пластик на основе полилактида – полимера молочной кислоты. В отличие от полиэтилена, который несъедобен для большинства микроорганизмов, желающих «съесть» полилактид намного больше. Однако на практике биоразлагаемые пластики оказались не такие биоразлагаемые. Всё дело в том, что для их разложения необходимы определённые условия, которые в реальности мало кем соблюдаются на свалках и мусорных полигонах. В результате «биоразлагаемый» пакет, закопанный под многометровым слоем смешанных отходов, будет гнить очень и очень медленно. Процесс можно ускорить, сделав пластик более «съедобным», но тогда мы проиграем в прочности изделий из такого пластика: те же пакеты будут часто рваться, либо их придётся делать толще и тратить на производство лишнее сырьё.

Исследователи из Калифорнийского университета в Беркли придумали, как сделать так, чтобы пакет из полилактида мог быть одновременно и прочным, и максимально биоразлагаемым. Для этого они добавили в полимерный материал фермент протеиназу К, способный разлагать полилактид до молекул молочной кислоты. Но если, что называется, «пустить козла в огород», т.е. добавить фермент к веществу, которое он должен разлагать, как тогда добиться того, чтобы такой пакет не развалился на кусочки ещё на полпути из магазина домой?

Как сделать биоразлагаемый пластик действительно биоразлагаемым
Модифицированная капсулами с ферментами полилактидная плёнка (слева). Справа – она же после трёхдневного компостирования.

Для этого фермент должен пребывать «в спячке», пока пакет используется по назначению, и пробудиться, когда пакет превращается в мусор и попадает на свалку. Такого поведения от фермента можно добиться, если поместить его в капсулу – оболочку из специального полимерного материала, чувствительного к изменению среды, например, к повышению температуры и влажности. Оболочка не только защитит полилактид от фермента, но и сам фермент от того, чтобы он не пришёл в негодность раньше положенного времени. У исследователей получилось изготовить плёнку, которая вела себя, как обычный пластик при комнатных условиях, но у которой «включался» режим биоразлагаемости при попадании в среду с повышенной температурой и высокой влажностью. Похожие условия создаются, например, при промышленном компостировании органических отходов.

Подобный подход можно применять не только к плёнкам, но и к другим материалам, наделяя их способностью к биоразложению при определённых условиях. С одной стороны, это поможет снизить загрязнение окружающей среды пластиковыми отходами. С другой стороны, лучше, когда все образующиеся отходы идут на вторичную переработку, которая позволяет сохранять ресурсы, затрачиваемые на создание нового материала. И здесь «умные» материалы будут мешать получать качественное сырьё за счёт разнообразия своего химического состава. Пока что существует тенденция к использованию биоразлагаемых полимерных материалов там, где их вторичная переработка была бы невыгодной, например, для пластиков, сильно загрязнённых пищевыми отходами. По мере совершенствования системы разделения мусора и создания новых материалов, можно будет сдвигать этот баланс в ту или иную сторону для экономии ресурсов нашей планеты.

Автор: Максим Абаев

Ссылка на источник