Всё сочувствие, на которое мы решились
 

Межнейронные «скелеты» помогают усваивать информацию во сне

Американские исследователи выяснили, что для эффективной перезаписи воспоминаний из кратковременной памяти в долговременную во сне необходимо, чтобы менялись не только нейронные связи, но и пространство вокруг самих нервных клеток. Причем, регулирует этот процесс микроглия.

Межнейронные «скелеты» помогают усваивать информацию во сне
Красным показаны околонейронные сети, зеленым – нейрон

Нервные клетки в мозге не «плавают» свободно в межклеточном веществе, а лежат в неких «скелетах» — так называемых околонейронных сетях (Perineuronal Nets, PNNs), которые представляют собой часть внеклеточного матрикса. Эти скелеты, довольно плотные по структуре, ранее считались абсолютно стабильными. Однако, недавно появились работы, которые показывали, что при обучении и формировании новых межнейронных контактов – синапсов – околонейронные сети тоже перестраиваются, создавая более «комфортные» для этого условия.

Авторы нынешней работы из Медицинского центра Университета Миссисипи предположили, что раз при получении нового опыта сети меняются, значит, они должны трансформироваться и во сне, когда мозг работает над сохранением полученных за день опыта и информации. И на животных моделях исследователи подтвердили свои догадки.

Они воспользовались стандартными экспериментами на эмоциональную память, когда помещали животных в клетку, там били их током, потом отправляли спать, а на следующий день отмечали реакцию страха, помещая грызунов в те же условия, что и в предыдущий день. Им удалось выяснить, что за модификацию околонейронных сетей отвечает специальный фермент – матриксная протеаза, которая называется катепсин-S. Интересно, что эту протеазу вырабатывают «иммунные» клетки мозга, называемые микроглией.

Оказалось, что экспрессия гена катепсина-S (то есть, фактически, активность воспроизводства фермента) подвержена биологическим часам, колеблется в зависимости от времени суток и сочетается с суточными изменениями в плотности дендритного древа (совокупности коротких отростков нейронов). То есть чем больше фермента, тем более активно способны перестраиваться межнейронные контакты и тем более хорошо усваивается новый опыт.

Чтобы убедиться, что изменения в циркадных ритмах повлекут за собой и нарушения в нормальной перестройке сетей (а если связь существует, то это непременно произойдет), ученые лишали животных сна, то есть моделировали его депривацию. В этот момент они отслеживали состояние сетей, пометив их специфическим «красителем» — агглютинином lectin wisteria floribunda (WFA) в нескольких областях мозга, ответственных за формирование эмоциональной памяти (гиппокамп, поясная извилина, миндалина и некоторые другие).

Лишение сна приводило к тому, что синтез катепсина-S снижался, и дневные колебания сетей, меченных WFA, становились менее заметными. Из-за этого воспоминания о негативном опыте у животных оставались нестабильными и быстро стирались – животное переставало демонстрировать реакцию страха, когда его помещали в клетку с ударами тока.

Кроме того, ученые показали, что для людей тоже характерны суточные колебания околонейронных сетей, меченных WFA, в ретикулярном ядре гипоталамуса и миндалине.

Таким образом, авторы предполагают, что они нашли ключ к изменяющейся во время сна синаптической пластичности и доказали, что эта пластичность соотносится с околонейронными сетями, перестройку которых регулирует микроглия при помощи протеазы катепсина-S. Фактически, они пришли к выводу, что микроглиальные клетки управляют консолидацией памяти во время сна.

Подробности исследования опубликованы в журнале eNeuro.

Текст: Анна Хоружая

Ссылка на источник