Как управлять мозгом на расстоянии

С помощью дистанционного магнитного поля можно включать и выключать в мозге разные зоны, но для этого, правда, сам мозг нужно слегка модифицировать.

как управлять мозгом на расстоянии
Двигательные нейроны мозга мыши

Когда мы видим, как кто-то управляет чужим мозгом на расстоянии, заставляет кого-то другого бежать, прыгать, махать руками и т. д. против его воли, это значит, что мы смотрим научно-фантастический фильм, или какое-нибудь мистическое фэнтези. Хотя современная наука делает все возможное, чтобы подобная фантастика воплотилась в жизнь.

Исследователи из Университета штата Нью-Йорк в Баффало научились в прямом смысле слова управлять мышью – с помощью метода магнитно-температурной стимуляции. Дело не обошлось без генетической инженерии: животным встроили ген белка, который контролирует поток ионов сквозь клеточную мембрану и который одновременно реагирует на температуру.

Такой ионный канал, оказавшись в мембране нервных клеток, стимулировал их активность при нагревании: ионные ворота открывались, ионы перегруппировывались, изменялась разность потенциалов снаружи и внутри мембраны, и клетка генерировала электрохимический импульс.

Нагревателем работали магнитные наночастицы, сделанные из феррита кобальта и феррита марганца. Наночастицы вводили в определенную область мозга, где были генетически модифицированные нейроны; частицы прилипали к поверхности клеток, и теперь оставалось только разогреть их в переменном магнитном поле – из-за быстрых изменений намагниченности наночастицы выделяли тепло, активируя термочувствительные ионные каналы.

Этот метод Арнд Пралле (Arnd Pralle) и его коллеги разрабатывали около десяти лет – все начиналось со стимуляции клеточных колоний растущих в лабораторной посуде, им на смену пришли круглые черви, и вот сейчас дело дошло до мышей.

В статье в eLife исследователи пишут, что они экспериментировали с двигательными зонами мозга: так, действуя на моторную кору, мышей понуждали бежать, а при стимуляции полосатого тела грызуны начинали крутиться на месте. Стимуляция других зон ввергала мышей в ступор, так что они не могли пошевелить ни единой лапой. По словам авторов работы, нейроны, на которые действовали наночастицами и полем, оставались живы и здоровы, несмотря на многократную стимуляцию.

Плюс магнитно-температурной стимуляции в том, что с ее помощью можно включать очень небольшие нейронные группы, всего 100 микрометров поперечнике. (Кстати говоря, похожий метод мы описывали в начале года, когда исследователи из Массачусетского технологического института опубликовали статью про стимуляцию мозга теплыми наночастицами.)

Конечно, кое-кто из читателей может вспомнить, что что-то похожее позволяет делать оптогенетика, когда мы сначала с помощью то же генетической инженерии снабжаем нейрон светочувствительным белком, а потом активируем его световым импульсом. Но чтобы послать в мозг световой импульс, нужен специальный оптоволоконный кабель, который будет освещать нужные нейроны в мозге. С магнитно-температурной стимуляцией никаких кабелей не нужно, внешнее магнитное поле действует без проводов, и из головы ничего не торчит.

Стоит добавить, что сейчас нейробиологи широко используют метод транскраниальной магнитной стимуляции, когда мощное магнитное поле, направленное извне, повышает или понижает активность каких-то участков мозга.

Но в этом случае речь идет не о группах нейронов диаметров 100 мкм, а о достаточно больших зонах нервной ткани – хотя даже такое широкое воздействие дает весьма впечатляющие результаты: например, несколько лет назад специалисты из Северо-Западного университета с помощью транскраниальной магнитной стимуляции сумели ни много, ни мало, как улучшить память нескольким людям.

Автор: Кирилл Стасевич

Ссылка на источник