Биологи из Колорадского университета в Боулдере научились повышать эффективность антибиотиков за счет наночастиц, ослабляющих бактериальные клетки.
Наночастицы, активируемые с помощью света, инициировали в клетках синтез активных форм кислорода и запускали ответную реакцию клеточной защиты. После такой обработки резистентные к антибиотикам бактерии начинали реагировать на них гораздо сильнее, причем в некоторых случаях эффект действия лекарств повышался в тысячу раз.
Антибиотики — эффективное средство борьбы с бактериальными возбудителями заболеваний, однако бактерии эволюционируют с огромной скоростью, адаптируясь к самым разным веществам, и ученым приходиться изобретать все новые и новые лекарства или даже классы лекарств. Постоянно возникают, в том числе, штаммы бактерий, резистентных к широкому спектру веществ (MDR, multiple drug resistant), представляющие собой особенную опасность для хозяйских организмов.
Известно, что АФК (активные формы кислорода) играют роль в процессе взаимодействия бактерий и антибиотиков, однако до сих пор детали этой роли были не вполне ясны. АФК присутствуют в клетке всегда, однако при избыточной их концентрации включается антиоксидантные механизмы клеточной защиты, поскольку АФК могут влиять на структуру ДНК, а также на нарушать работу металлсодержащих ферментов. Известно, что при делеции генов, ответственных за подавление синтеза пероксидов и супероксидов, восприимчивость к антибиотикам у бактерий повышается. Исследователи решили подробнее изучить это явление, искусственным образом повышая концентрацию АФК в бактериальных клетках.
В рамках данного проекта ученые работали с резистентными штаммами трех видов бактерий — Escherichia coli, Salmonella enterica и Klebsiella pneumoniae. В клетки вводили наночастицы, сделанные из теллурида кадмия — полупроводникового материала, которые можно было контролировать, активируя в нужный момент с помощью света с определенной длиной волны и генерируя при этом строго заданный потенциал. В результате наночастицы испускали электроны, которые, в свою очередь, создавали в клетке из кислорода необходимые АФК — супероксиды (радикалы *O2—). Супероксиды обладают сравнительно длительным временем жизни и значительным потенциалом действия. Разрушая сульфидные мостики в металлсодержащих белках, супероксиды способны создавать поток ионов железа в клетке. Ионы железа локализуются в ДНК, белках и липидах и инициируют реакцию Фентона.
Это оказалось эффективным способом ослабления бактериальных клеток перед обработкой антибиотиками. В 75 процентах разных протестированных комбинаций «АФК+антибиотик» ослабленные действием АФК бактерии значительно сильнее реагировали даже на «старые и знакомые» антибиотики, причем как на бактерицидные вещества (цефтриаксон, ципрофлоксацин и стрептомицин), так и на бактериостатины (клиндамицин и хлорамфеникол). При определенных концентрациях эффективность лекарства при этом повышалась до 1000 раз.
Помимо культур клеток, методика была также протестирована на живых организмах — нематодах Caenorhabditis elegans. Выяснилось, что комбинированная терапия позволяет выжить примерно на 20 процентов большему количеству нематод, кишечная микрофлора которых поражена MDR бактериями, по сравнению с нематодами, получившими только антибиотик.
Ученые рассчитали глубину кожи человека, с которой можно работать, пользуясь данной методикой, и определили ее как 1-2 сантиметра. Именно на такую глубину свет от зеленых светодиодов, необходимый для активации наночастиц, будет проникать с достаточной эффективностью. Таким образом, полагают они, на данный момент подобная методика может быть применена для лечения кожных инфекций и ожогов. Ученые особенно подчеркивают важность подобных разработок для борьбы с внутриклеточными паразитами, такими, как различные виды Salmonella, поскольку наночастицы достаточно малы и подвижны, чтобы проникать сначала внутрь хозяйских, а затем внутрь бактериальных клеток.
Исследование опубликовано в Science Advances.
А посмотреть на 3D-структуру машин, с помощью которых бактерии обороняются от антибиотиков, можно здесь.
Автор: Анна Казнадзей