Всё сочувствие, на которое мы решились
 

Как в мир РНК пришли белки

Гипотеза РНК-мира – одна из самых популярных среди гипотез о происхождении жизни на Земле. Она отталкивается от того, что один из главных признаков жизни – это передача наследственной информации с учётом изменений, которые в ней произошли.

Как в мир РНК пришли белки

Нуклеиновые кислоты вполне подходят на роль «первопредков»: они информацию хранят, они могут её копировать, и в той информации, которая в них хранится, возможны изменения – мутации, которые могут быть полезными, нейтральными или вредными. Однако, если говорить о ДНК, то ей для копирования всё-таки нужна помощью белков. А вот РНК сама способна быть ферментом, сама может осуществлять определённые химические реакции, и, как показали эксперименты, молекулы РНК вполне способны наращивать рибонуклеотидную цепь – то есть РНК может синтезировать РНК.

Строительным материалом для РНК служат другие молекулы – фосфорная кислота, углеводы и азотистые основания (которые служат буквами генетического кода). Последние исследования говорят нам о том, что они вполне могли появиться из неорганического сырья либо же их могли принести на Землю метеориты. Но одними нуклеиновыми кислотами дело ведь не ограничилось. Потом появились белки, на которых сейчас держится почти вся клеточная биохимия. Те же белки сейчас занимаются копированием нуклеиновых кислот и синтезом других белков. Есть гипотезы, по которым белки могли возникнуть сами по себе, причём без каких-то экстремальных условий. Но как бы они ни появились, они должны были начать взаимодействовать с нуклеиновыми кислотами. Причём взаимодействовать очень тесно: всё-таки сейчас у нас информация о белках закодирована в именно ДНК и РНК, последовательности аминокислот соответствует последовательность генетических букв.

Сотрудник Мюнхенского университета имени Людвига и Максимилиана описывают в Nature, как это могло произойти. Дело в том, что азотистые основания – аденин (А), тимин (Т), гуанин (Г), цитозин (Ц) и урацил (У) вместо тимина в РНК – нередко получают химические модификации, и в таком модифицированном виде сидят в цепях нуклеиновых кислот. Если говорить о РНК, то модифицированные «буквы» есть, например, в рибосомах. Так называют большие молекулярные машины, которые заняты синтезом белка во всех живых клетках. Каждая рибосома – это сложный комплекс, в котором на каркасе специальных рибосомных РНК сидит множество рибосомных же белков.

Как в мир РНК пришли белки
Структура рибосомной субчастицы эукариот; разными цветами обозначены молекулы РНК и белков. Возможно, предками таких сложных молекулярных машин были маленькие комплексы небольших древних РНК и пептидов.

Информацию для синтеза белка рибосома считывает с другой РНК, матричной (мРНК) – она едет по мРНК и считывает последовательность букв, которая кодирует тот или иной белок. При этом аминокислоты для синтеза белка в рибосому приносят другие специализированные РНК – транспортные, или тРНК. В общих чертах получается следующая картина: транспортная РНК с той или иной аминокислотой соприкасается с участком матричной РНК, и если к рибосоме пришла нужная тРНК с нужной аминокислотой, она эту аминокислоту присоединяет к растущей белковой цепи. Причём здесь модифицированные азотистые основания в рибосомной РНК? При том, что они стабилизируют взаимодействие между двумя другими РНК транспортной и матричной.

Некоторое время назад удалось показать, что буквы с модификациями тоже можно синтезировать из неорганического сырья. Также удалось продемонстрировать, что модифицированные буквы могут напрямую соединяться с аминокислотами. И вот сейчас оказалось, что РНК с модифицированными буквами могут сами, без помощи белков, конструировать небольшие пептиды из отдельных аминокислот.

Исследователи синтезировали небольшие РНК, на конце у которых сидели модифицированные азотистые основания. РНК были парными, то есть они были взаимнокомплементарными. Генетические буквы могут соединяться друг с другом водородными связями, аденин (А) с тимином (Т) или с урацилом (У), гуанин (Г) с цитозином (Ц) – говорят, что они комплементарны друг другу. Две нуклеиновые кислоты (или два участка в пределах одной нуклеиновой кислоты) могут поэтому легко слипнуться друг с другом, если у них подходящие последовательности букв.

В эксперименте у одной РНК на конце была модифицированная буква А, к которой присоединялась аминокислота. У другой РНК на конце была модифицированная У. Когда обе РНК соединялись, А оказывалась рядом с У, и аминокислота перескакивала с А (буквы-донора) на У (букву-акцептор). Потом молекулы грели, и под действием температуры РНК расходились. После охлаждения к РНК-акцептору, которая продолжала удерживать полученную аминокислоту, приходила новая РНК-донор – тоже комплементарная, тоже способная с ней слипнуться, но с другой аминокислотой на модифицированной А. И теперь новая аминокислота также перепрыгивала на РНК-акцептор – но перепрыгивая, она соединялась с первой аминокислотой, которую РНК-акцептор получала от предыдущей напарницы-донора. Теперь на РНК сидели две аминокислоты – и их число модно было таким способом довести аж до пятнадцати.

Пятнадцать аминокислот – это уже небольшой пептид, синтезированный без всякой рибосомы, усилиями голых РНК. То есть древние РНК вполне могли научиться работать с аминокислотами, соединяя их в пептиды. Кстати, аминокислоты и пептиды, которые образовывались на модифицированных буквах, усиливали связь двух РНК (донорной и акцепторной) друг с другом. То есть появляющиеся белки могли со своей стороны направлять развитие РНК, например, помогая им наращивать свою длину. О генетическом коде тут пока речь не идёт, но в принципе белок-синтезирующие РНК могли постепенно выработать какое-то отношение к тем или иным пептидам, так что РНК с определёнными последовательностями были бы склонны синтезировать пептиды с определённым аминокислотным составом, а дальше молекулярное сообщество могло развиваться в сторону сложных ферментативных машин и настоящего генетического кода.

Автор: Кирилл Стасевич

Ссылка на источник