Всё сочувствие, на которое мы решились
 

Двуликие митохондрии

Чтобы энергетические митохондриальные реакции не мешали синтетическим, митохондрии делят эти функции между собой.

Двуликие митохондрии

Про митохондрии обычно говорят, что это силовые станции клетки: в митохондриях идут химические реакции, которые дают клетке много энергетических молекул АТФ. Но энергетика – не единственное, чем занимаются митохондрии, они также синтезируют некоторые аминокислоты, которые используются во всей остальной клетке. Проблема в том, что между энергетическими и синтетическими реакциями есть точка пересечения, и эта точка – глутаминовая кислота, или глутамат.

Глутамат участвует в цикле Кребса, или цикле трикарбоновых кислот, в котором ацетильная группа окисляется и превращается в углекислый газ, а электроны, взятые из ацетильной группы, отправляются в электронтранспортную цепь. Ацетильная группа приходит в митохондрии в составе соединения под названием ацетилкофермент А, или ацетил-КоА, а сам ацетил-КоА образуется в цитоплазме при расщеплении углеводов, липидов и аминокислот. Внутри митохондрий с ацетил-КоА начинают работать ферменты цикла Кребса и молекулы-посредники, те самые трикарбоновые кислоты, которые служат как бы рабочими инструментами, с помощью которых ферменты могут расщепить ацетил-КоА. (Что до синтеза АТФ, то он происходит в ходе работы белков электронтранспортной цепи, вмонтированной во внутреннюю мембрану митохондрий.)

Одна из кислот цикла Кребса, α-кетоглутарат, образуется из глутаминовой кислоты. И та же глутаминовая кислота служит предшественником при синтезе аминокислот орнитина (из которого потом получается аргинин) и пролина; аргинин и пролин нужны для синтеза белков. Фермент, который отправляет глутамат в пути синтеза других аминокислот, называется P5CS, и он работает там же, в митохондриях, где происходит цикл Кребса. Можно предположить, что когда клетке нужно много энергии, синтетические реакции митохондрий притормаживаются. Наверняка в этот момент уровень пролина в клетке должен упасть, ведь синтезировать его не из чего, весь глутамат пошёл на обслуживание цикла Кребса. Однако когда сотрудники Мемориального онкологического центра имени Слоуна–Кеттеринга попробовали в своих экспериментах заставить клетки синтезировать как можно больше АТФ в митохондриальных реакциях, то с количеством аминокислоты пролина ничего особенного не случилось.

Тогда возникла гипотеза, что зависящие от глутамата энергетические и синтетические реакции в митохондриях каким-то образом разделены. Каких-то специальных стенок в них не заметно. Внутренняя митохондриальная мембрана образует выпячивания-кристы, но они не создают замкнутые камеры в митохондриях. Исследователи предположили, что, может быть, сами митохондрии приобретают специализацию: одни дают энергию, другие – аминокислоты. Подсказкой тут стали более ранние эксперименты, которые показали, что упоминавшийся выше фермент P5CS, который отправляет глутамат в синтетические реакции, должен для эффективной своей работы соединяться в нити-фибриллы. В то же время в клетках, которых подвергали стрессу, нитей из P5CS в митохондриях не видно.

В новых экспериментах клетки выращивали на питательной среде, в которой не хватало много чего: питательных веществ, факторов роста, которые стимулируют клеточное деление, и пр. Фермент P5CS в этих условиях равномерно распределялся по митохондриям, и, следовательно, был малоактивен. Если же всё то, чего прежде не хватало, появлялось сполна, то P5CS собирался в нити, и, следовательно, должен был эффективно направлять глутамат в синтез других аминокислот. Однако уровень самого P5CS не повышался, и P5CS-нити были только в некоторых митохондриях. В другой серии опытов в клетках стимулировали митохондриальный синтез АТФ, и у них появлялись митохондрии с нитями P5CS. К клеткам добавляли больше пролина, и нити P5CS не образовывались.

С последним всё понятно: когда пролина и так много, делать его ещё больше из глутамата не нужно. Но почему интенсивные энергетические реакции заставляют P5CS складываться в нити, причём не везде, а только в некоторых митохондриях? В статье в Nature говорится, что в митохондриях с P5CS-нитями было мало энергетического фермента АТФ-синтетазы, которая, собственно, и синтезирует АТФ. Более того, когда P5CS начинает образовывать нити, это происходит в той части митохондрий, где АТФ-синтетазы мало.

Митохондрии могут объединяться и разъединяться. Объединившись, две митохондрии могут добиться того, что энергетическая АТФ-синтетаза останется преимущественно на одной половине, а синтетический P5CS – на другой. Теперь митохондрии могут обратно разъединиться, только теперь они окажутся специализированными: в одной будут идти энергетические реакции, которые ведут к синтезу АТФ, а в другой – синтетические реакции которые ведут к синтезу аминокислот орнитина, аргинина и пролина. Когда в митохондриях подавляли активность белков, управляющих их соединением и разъединением, нитей P5CS не появлялось. Очевидно, митохондриям нужно соединяться, чтобы эффективно разделить два блока реакций. Когда энергии нужно много, соответствующие реакции должны идти предельно эффективно, и лучше, чтобы мешающие им реакции синтеза аминокислот происходили где-то в другом месте – например, в других митохондриях. Что до ситуации, когда не хватает питательных веществ, то ведь тут не до синтеза новых белков, поэтому фермент P5CS остаётся в малоактивном состоянии, да и энергетические белки работают вполсилы.

На самом деле, о том, что митохондрии могут специализироваться на разных задачах, было известно и раньше. Например, те из них, которые в клетках жировой ткани сидят близко к липидным каплям, поддерживают синтез некоторых липидных молекул; так что лучше митохондрии называть не двуликими, а многоликими. Однако в данном случае удалось показать, как специальность митохондрий меняется в реальном времени, подчиняясь меняющимся обстоятельствам. В связи с этим один из вопросов, который предстоит решать в дальнейших исследованиях, состоит в том, кто управляют подобными изменениями: сами ли митохондрии имеют всё необходимое, чтобы чувствовать требования момента, или же ими манипулируют общеклеточные силы.

Другой вопрос касается внутреннего переустройства митохондрий, молекулярного аппарата, который перетаскивает белки, меняет мембраны и пр. Всё, что происходит с митохондриями, имеет фундаментальное значение, и наверняка в будущем мы ещё услышим про какие-нибудь особенности в энергетическо-синтетической специализации митохондрий, которые имеют место в разных клетках, на разных этапах развития или при разных болезнях.

Автор: Кирилл Стасевич

Ссылка на источник