Всё сочувствие, на которое мы решились
 

А ты симпатическая. Ученые 130 лет ошибались в строении автономной нервной системы

Автономная нервная система — важнейший «дирижер» организма, который в паре с эндокринной системой регулирует все телесные функции, не зависящие от сознательного контроля. Она была описана 130 лет назад, и казалось, что к настоящему времени изучена практически досконально, по меньшей мере анатомически и физиологически.

А ты симпатическая. Ученые 130 лет ошибались в строении автономной нервной системы

Однако сейчас франко-британский научный коллектив пришел к небезосновательному выводу, что в классическом представлении об этой системе присутствует фундаментальная ошибка: граница между ее симпатическим и парасимпатическим отделами была проведена неправильно.

Инь и ян автономной нервной системы

Автономная, или вегетативная, нервная система подразделяется на два отдела с практически противоположными эффектами: симпатический, который отвечает за реакцию на стресс («борьба или бегство»), и парасимпатический, который поддерживает гомеостаз («отдых и пищеварение»). Эти отделы различаются по развитию в ходе формирования организма, анатомическому строению и биохимии.

Сигналы автономной системы идут от соответствующих ядер ЦНС (головного и спинного мозга) по нервным волокнам к нейронам периферических ганглиев (нервных узлов), которые, в свою очередь, передают эти сигналы к внутренним органам.

При этом ганглии симпатической системы расположены сегментарно рядом с позвоночником, то есть ее преганглионарные нервные волокна короткие, а постганглионарные длинные. Нервные узлы парасимпатической системы анатомически связаны с органами, которые они иннервируют, то есть ее преганглионарные волокна идут по длинным нервам из ЦНС, а постганглионарные коротки.

Во всех преганглионарных и парасимпатических постганглионарных волокнах нейромедиатором служит ацетилхолин, а в симпатических постганглионарных — норадреналин.

Особый отдел автономной нервной системы представляет собой нервная система кишечника: помимо вышеперечисленных структур, в ней присутствуют еще сенсорные и вставочные нейроны, из-за чего некоторые специалисты предлагают выделить ее в собственный отдел вегетатики. Но речь сейчас не о ней.

В процессе развития симпатические ганглии образуются в результате прямой миграции клеток нервного гребня из нервной трубки (предшественницы ЦНС). Формирование парасимпатических ганглиев зависит от роста преганглионарных нервных волокон, которые доставляют клетки-предшественницы нейронов к месту будущего узла. Такая разница в образовании ганглиев связана с экспрессией разных факторов транскрипции в будущих симпатических и парасимпатических нейронах.

Интуиция подвела

Со времен классического труда британского физиолога Уолтера Гаскелла (Walter Gaskell) считалось, что парасимпатическую иннервацию осуществляют длинные черепные нервы (глазодвигательный, лицевой, языкоглоточный и — основной — блуждающий), берущие начало в ядрах среднего и промежуточного мозга и регулирующие работу глаз, слизистой оболочки носа, желез и внутренних органов до нижних отделов толстой кишки, а также крестцовые чревные нервы, которые начинаются в ядрах боковых рогов крестцового отдела спинного мозга и регулируют работу тазовых органов.

Поводом для этого стали некоторые особенности крестцовых нервов. Анатомически они менее разветвлены, чем симпатические нервы грудного и поясничного отделов, их ганглии расположены дальше от позвоночника, и они иннервируют внутренние органы, до которых не доходят ветви блуждающего нерва. Физиологически крестцовые нервы действуют на некоторые органы противоположно грудным и поясничным. И, наконец, фармакологически иннервируемые ими органы чувствительны к блокаторам постганглионарных рецепторов к ацетилхолину.

А ты симпатическая. Ученые 130 лет ошибались в строении автономной нервной системы
Классическое представление об устройстве симпатической (красный цвет) и парасимпатической (чёрный цвет) нервных систем

Правомерность отнесения крестцовых чревных нервов к парасимпатической системе уже ставили под сомнение, поскольку волокна черепных нервов отходят от ЦНС дорсально (со стороны спины), а крестцовых чревных — вентрально (со стороны груди и живота), как и симпатические волокна. Это, в свою очередь, указывает на разные источники их развития в эмбриональном периоде. Однако к переписыванию учебников это не привело.

Вся парасимпатика — от головы

Спустя 130 лет после выхода статьи Гаскелла сотрудники Парижского исследовательского университета естественных и гуманитарных наук и Лондонского университетского колледжа убедительно подтвердили подобные сомнения, исследовав развитие пре- и постганглионарных нейронов у мышей.

Они выяснили, что, в отличие от клеток-предшественниц парасимпатических нейронов, которые экспрессируют факторы транскрипции Sox10, Phox2b, Tbx20, Tbx2 и Tbx3, будущие тазовые ганглионарные клетки экспрессируют Sox10 и FoxP1, как и симпатические нейроны. Более того, формирование тазовых ганглиев оказалось независимым от преганглионарных нервных волокон и происходило даже в их отсутствие, что для парасимпатических ганглиев нехарактерно. Образование этих нервных узлов в присутствии преганглионарных крестцовых волокон и без них показано на видео вверху и внизу соответственно.

На 14 день эмбрионального развития в нейронах ядер блуждающих нервов происходил синтез везикулярного переносчика ацетилхолина (VAChT) и отсутствовала синтаза оксида азота (NOS), а в спинномозговых ядрах грудных, поясничных и крестцовых нервов — наоборот.

Также ученые показали, что нейроны тазовых ганглиев экспрессируют факторы транскрипции Isl1, Gata3 и Hand1, как и клетки симпатических ганглиев, и не вырабатывают факторы Hmx2 и Hmx3, служащие маркерами парасимпатических ганглионарных нейронов.

А ты симпатическая. Ученые 130 лет ошибались в строении автономной нервной системы
Новое представление об устройстве симпатической (красный цвет) и парасимпатической (синий цвет) нервных систем

Полученные результаты красноречиво свидетельствуют о том, что крестцовые чревные нервы и тазовые ганглии относятся к симпатической нервной системе. Таким образом, вся парасимпатическая иннервация исходит только от черепных нервов, и тазовые органы ее лишены.

Лечить по-новому

Подобные выводы в корне меняют взгляды на эволюцию, развитие, анатомию и физиологию автономной нервной системы и тазовых органов. Это, в свою очередь, должно изменить понимание развития заболеваний нижнего отдела спинного мозга, крестцовых нервов и тазовых органов, а следовательно, и подходы к их лечению, как имеющиеся, так и перспективные.

Как пишет автор сопутствующей статьи Игорь Адамейко из Каролинского института в Стокгольме и Венского медицинского университета, полученные данные имеют большое значение для развивающейся сферы биомедицины — электроцевтики, или биоэлектронной медицины. Ее целью является лечение широкого спектра хронических заболеваний с помощью миниатюрных автономных устройств с микропроцессорами («нервной пыли»), имплантируемых непосредственно в нервы. Эти устройства модифицируют нервные импульсы так, чтобы нормализовать нарушенные функции пораженных органов. Подобное вмешательство схоже с успешно применяемой электростимуляцией мозга, но действует на уровне отдельных нервов или нервных волокон. Для успеха подобного лечения необходимо четко понимать, является интересующий нерв симпатическим или парасимпатическим.

А ты симпатическая. Ученые 130 лет ошибались в строении автономной нервной системы
Биоэлектронный чип на нервном волокне в представлении художника

Разработками в области электроцевтики занимается новый проект Galvani Bioelectronics, созданный Verily Life Sciences (дочкой компании Alphabet, которой принадлежит Google) и британским фармгигантом GlaxoSmithKline. На протяжении первых семи лет работы партнеры намерены вложить в этот проект 540 миллионов фунтов стерлингов.

Помимо электроцевтики, пересмотр иннервации тазовых органов имеет значение для развивающейся клеточной медицины, отмечает Адамейко. В случае восстановления поврежденных крестцовых нервов и тазовых ганглиев с помощью стволовых клеток врачам и ученым необходимо понимать, какие клетки-предшественницы использовать и как направлять их дифференцировку.

Автор: Олег Лищук

Ссылка на источник