Всё сочувствие, на которое мы решились
 

Ученые описали новые нуклеазы, которые помогут создать перспективный инструмент для редактирования генома

Исследователи Сколтеха и их коллеги из России и США описали две новые компактные нуклеазы Cas9, используемые системой CRISPR-Cas для разрезания ДНК, которые могут пополнить набор инструментов для редактирования генома.

Ученые Сколтеха описали новые нуклеазы, которые помогут создать перспективный инструмент для редактирования генома

Ученые показали, что одна из двух нуклеаз может работать в клетках человека, что открывает перспективы для ее применения в биомедицинских приложениях. Результаты исследования опубликованы в журнале Nucleic Acids Research.

Технология геномного редактирования CRISPR-Cas заимствована у бактерий и основана на использовании Cas нуклеаз, которые способны с помощью CRISPR РНК разрезать генетические последовательности, выполняя роль лезвий в «генетических ножницах», открытие которых было удостоено Нобелевской премии (2020 год, Эммануэль Шарпантье и Дженифер Дудна).

Для исследовательских целей в качестве нуклеазы Cas9 чаще всего используют нуклеазу из бактерий-стрептококков, Streptococcus pyogenes (тип II-A SpCas9). Эта нуклеаза эффективна и относительно проста: один крупный белок одновременно связывается с CRISPR РНК и разрезает ДНК. Кроме того, SpCas9 для узнавания мишеней требует достаточно короткую PAM-последовательность “NGG” – несколько нуклеотидов, фланкирующих целевой сайт на ДНК, необходимые для успешного разрезания генома.

SpCas9 — крупный белок, а это может вызывать проблемы в случаях, когда необходимо, например, использовать частицу аденоассоциированного вируса (AAV) в качестве средства доставки «генетических ножниц» в клетку. В идеале в одной AAV частице должны уместиться и ген, кодирующий Cas белок, и последовательности, кодирующие направляющие CRISPR РНК, а это требует меньших по размеру белков Cas9. В то же время, для более коротких нуклеаз, как правило, требуются более длинные и сложные PAM-последовательности, поэтому исследователям зачастую приходится искать компромисс между размером белка и выбираемыми мишенями.

Авторы статьи – недавно защитившийся аспирант Сколтеха из лаборатории профессора Северинова Яна Федорова и сотрудник лаборатории Александра Васильева вместе с коллегами− описывают две новые небольшие нуклеазы Cas9, полученные из бактерии Defluviimonas sp.20V17, обитающей в гидротермальных источниках, и бактерии Pasteurella pneumotropica, паразитирующей у грызунов и других млекопитающих. Эти нуклеазы одновременно обладают достаточно малым для доставки в AAV векторе размером и имеют относительно короткие PAM-последовательности (“NNRNAY” и “NNNNRTT”), что является двойным преимуществом в случае ферментов Cas9.

Новые нуклеазы относятся к системам CRISPR-Cas типа II-C, где эффекторы Cas9 часто имеют меньший размер, чем SpCas9. Структура II-C нуклеаз очень похожа на строение SpCas9, но в то же время эти белки обладают рядом уникальных особенностей: у них отсутствует несколько субдоменов, а домен, отвечающий за взаимодействие со скаффолдом направляющей РНК, имеет меньший размер, что делает нуклеазы компактнее.

«Да, эффекторам Cas9 типа II-C, как правило, требуются более длинные PAM-последовательности, но это лишь наблюдение, основанное на изучении ограниченного количества описанных на сегодняшний день II-C нуклеаз. Вот, например, в бактерии Staphylococcus auricularis недавно был обнаружен белок SauriCas9, который аналогично белку PpCas9 требует короткую PAM-последовательность – всего лишь две “буквы” (“NNGG”). Думаю, в скором времени будут обнаружены и другие ферменты Cas9 типа II-C, требующие коротких PAM-последовательностей. Малоразмерные Cas9 с разными требованиями к PAM увеличивают число потенциальных ДНК-мишеней в геномах эукариот и прокариот, которые можно редактировать CRISPR-Cas системами», − говорит Яна Федорова.

Эксперименты in vitro и в бактериях показали эффективность двух новых нуклеаз в разрезании ДНК, а нуклеаза PpCas9, полученная из бактерии Pasteurella Pneumotropica, также оказалась активна в клетках человека. Кроме того, было установлено родство PpCas9 белка с другими нуклеазами Cas9 − Nme1Cas9 и Nme2Cas9, активность которых в эукариотических клетках была показана ранее. Для оценки эффективности PpCas9 в эукариотах потребуются дополнительные исследования, однако, по мнению авторов, этот белок может быть использован в ряду с традиционными нуклеазами, которые сегодня используются в микробных биотехнологиях и биомедицине для редактирования генома, и расширить применение CRISPR-Cas систем.

Исследователи отмечают, что предварительные исследования нецелевого разрезания PpCas9 ДНК указывают на достаточную специфичность этого фермента, однако необходимо провести полное исследование специфичности PpCas9 более сложными методами. «PpCas9 к тому же проявляет избирательность в выборе мишеней в эукариотах, что может уменьшать число потенциальных целевых сайтов в геноме и тем самым ограничивает применение белка. Причины и механизмы такой избирательности PpCas9 будут предметом дальнейших исследований», − добавляет Яна Федорова.

Ссылка на источник