Учёные из Университета Гонконга совершили огромный прорыв в исследовании человеческого мозга. Команда под руководством профессора Эда Ву (Ed Wu) открыла новые функции гиппокампа, о которых ранее нейробиологам не было известно.
Напомним, что гиппокамп является частью лимбической системы головного мозга. Он участвует в механизмах формирования эмоций и консолидации памяти (перехода кратковременной памяти в долговременную), а также отвечает за навигацию и генерирует тета-ритм (один из ритмов ЭЭГ) при удержании внимания.
Болезнь Альцгеймера и другие формы деменции затрагивают и повреждают именно гиппокамп, неслучайно первые признаки этих расстройств – нарушение памяти и дезориентация. Люди, у которых нарушены функции гиппокампа, теряют способность формировать и сохранять новые воспоминания.
Кроме того, этот участок также тесно связан с другими болезнями и расстройствами, например, эпилепсией, глобальной амнезией, посттравматическим стрессовым расстройством, шизофренией и так далее.
Исследователи стремятся изучить человеческий мозг максимально точно – это даёт понимание природы многих болезней и, соответственно, помогает более эффективно с ними бороться. Тем не менее до сих пор роль гиппокампа и – главное – его связи с другими составляющими сложной системы нашего мозга были изучены недостаточно подробно.
После долгих исследований команда профессора Ву экспериментальным путём доказала, что низкочастотные ритмы электрической активности в гиппокампе (который, кстати, не «спит», даже если человек находится в коме) могут управлять функциональными связями в коре головного мозга и усиливать сенсорные реакции.
Кора головного мозга (слой серого вещества толщиной 1,3–4,5 миллиметра) играет очень важную роль в осуществлении высшей нервной деятельности. Эта область задействована в формировании эмоций и памяти, сознания и языковых функций, а также в процессах восприятия, мышления и познания.
Эксперты выяснили, что низкочастотная активность гиппокампа может стимулировать функциональную интеграцию между различными областями коры головного мозга и повышать чувствительность зрения, слуха и осязания. Кроме того, те же низкочастотные ритмы могут улучшить память и навыки обучения, поскольку они обычно наблюдаются в фазе медленного сна, а именно в это время наш мозг формирует воспоминания и раскладывает по полочкам своего хранилища данных новую информацию.
Более того, в ходе тех же испытаний фармакологическая инактивация гиппокампа уменьшила функциональность соединений мозга.
«Переключать» ритмы электрической активности специалистам помогли методы оптогенетической стимуляции. За результатами всех экспериментов учёные наблюдали при помощи функциональной магнитно-резонансной томографии.
По сути гиппокамп можно рассматривать как сердце мозга, заключают исследователи. Они уверены, что результаты работы, опубликованной в издании PNAS, сыграют ключевую роль в создании новых методов лечения болезни Альцгеймера на основе нейромодуляции гиппокампа.
Нейромодуляция – это внешнее воздействие на нейроны, которое меняет режим их работы. Она бывает фармакологической, магнитной, электрической. Эти методы также могут быть эффективны в лечении других заболеваний головного мозга, о которых мы упоминали выше.
К слову, в 2016 году команда Ву также выяснила, что таламус представляет собой не только ретрансляционную область мозга, которая передаёт сенсорную и моторную информацию от органов чувств к соответствующим областям коры больших полушарий, но и может инициировать нейронные взаимодействия на разных частотах.
Напомним, что ранее исследователи обнаружили в гиппокампе нейроны, подавляющие страх.
Автор: Юлия Воробьёва