Всё сочувствие, на которое мы решились
 

Ученые построили численную модель рабочей памяти

Сотрудники Центра нейроэкономики и когнитивных исследований ВШЭ построили численную модель рабочей памяти и показали стабилизирующую роль гамма-ритма, а также важность быстрого взаимодействия между компонентами модели.

Ученые построили численную модель рабочей памяти

Полученные результаты могут стать частью теоретического базиса для экспериментов по улучшению функций рабочей памяти при помощи неинвазивной стимуляции мозга. Исследование опубликовано в журнале Frontiers in Neural Circuits.

Память человека устроена сложным образом и позволяет мозгу хранить информацию разное количество времени в зависимости от того, насколько долго необходимо обращаться к воспоминаниям. Для того чтобы действовать на основании информации, которая недоступна прямо сейчас органам восприятия, мозг человека использует рабочую (кратковременную) память. Она необходима нам для того, чтобы рассуждать и размышлять, для осознания сложной информации, а также для принятия решений.

Мозг человека постоянно электрически активен. Нейроны — клетки головного мозга, которые обмениваются друг с другом информацией с помощью коротких электрических импульсов. Во время удержания информации в рабочей памяти нейроны префронтальной коры входят в активное состояние с повышенной частотой порождения импульсов. Считается, что, помимо активности отдельных нейронов, для рабочей памяти также важна коллективная ритмическая активность нейронных сетей мозга в различных частотных диапазонах.

Среди видов ритмической активности мозга, наблюдаемых при использовании рабочей памяти, особый интерес представляют импульсы в гамма-диапазоне. Гамма-ритмом называются электрические колебания в мозге человека с частотами от от 30 до 170 герц. Гамма-активность указывает на «включение» сетей нейронов и совпадает с моментами повышения частоты порождения импульсов этими сетями.

В период удержания информации в рабочей памяти, когда сам стимул уже отсутствует, но информация о нем необходима для последующего решения, наблюдается повышенная интенсивность гамма-колебаний по сравнению с фоновым состоянием, не требующим удержания информации.

Сегодня существует множество численных моделей рабочей памяти, в основе большинства из которых лежат нейронные сети с несколькими стабильными состояниями. В самом простом случае у системы существует два устойчивых состояния: фоновое — с низкой частотой возникновения импульсов, соответствующее отсутствию информации в рабочей памяти, и активное — с высокой частотой порождения импульсов, соответствующее удержанию информации.

Переход от фонового состояния к активному происходит под действием короткого внешнего импульса. Именно в этот момент предъявляется стимул, который необходимо будет удерживать. Современные данные показывают, что активное состояние стабильно лишь в течение небольшого временного интервала (это явление называют метастабильностью).

В своей статье авторы рассмотрели модель рабочей памяти, содержащую набор популяций нейронов, связанных друг с другом возбуждающими связями. В момент предъявления стимула часть нейронных популяций префронтальной коры считывают сигнал и объединяются в единую сеть.

Нейроны разряжаются случайным образом, поэтому каждый нейрон в связанной сети фактически получает на вход некое подобие шума, который складывается из сигналов от всех элементов. Ученые смоделировали такое взаимодействие в виде общего случайного сигнала, подаваемого на вход части популяций. Стабильность удержания стимула в рабочей памяти оценивалась как среднее время, за которое популяция возвращалась в фоновое состояние после предъявления стимула.

Авторы показали, что информация о стимуле удерживается более устойчиво, если популяции нейронов получают на вход одинаковый шумовой сигнал, а не разные независимые сигналы. Также было обнаружено, что подача на вход гамма-ритма обеспечивала стабилизацию рабочей памяти, и усиливала различие между двумя группами популяций. Это повышало «четкость» удерживаемой в памяти информации.

Сегодня теоретическое понимание значения ритмов мозга для рабочей памяти отстает от накопленного экспериментального материала. Опубликованное сотрудниками НИУ ВШЭ исследование вносит дополнительный вклад в развитие теории контроля процессов, лежащих в основе рабочей памяти.

«Наша работа продолжает серию теоретических исследований связи колебательных процессов с рабочей памятью и расширяет имеющееся понимание этой связи. Например, классические работы в данной области указывают на дестабилизирующую роль внешних сигналов и важность медленного взаимодействия между нейронами для поддержания рабочей памяти, – комментирует младший научный сотрудник Института когнитивных нейронаук Никита Новиков.

– Напротив, в своей работе мы продемонстрировали стабилизирующую роль внешнего сигнала и важность обеспечивающего их быстрого взаимодействия. В целом, полученные результаты могут стать частью теоретического базиса для экспериментов по улучшению функций рабочей памяти при помощи неинвазивной периодической стимуляции мозга».

Ссылка на источник