Всё сочувствие, на которое мы решились
 

Как улучшить мозг. Выпуск 15. Что происходит, если заставить мозг работать активнее?

В течение последнего десятилетия появилось несколько исследований, демонстрирующих, что люди способны научиться регулировать собственную нейронную активность, глядя на собственную фМРТ.

Как улучшить мозг. Выпуск 15. Что происходит, если заставить мозг работать активнее?

К тому же такая саморегуляция в некоторых кортикальных и субкортикальных областях мозга ведёт к значительным когнитивным, эмоциональным и моторным изменениям. Подобная фМРТ-практика может стать новым подходом когнитивных нейронаук, направленных на изучение причинно-следственных связей между активностью нейронов и поведением. Когда учёные разберутся, как она работает.

Речь идёт о гемодинамической реакции в виде ответа изменением уровня кислорода в крови (BOLD; Blood Oxygenation Level Dependent response), который можно усиливать или ослаблять, смотря на данные фМРТ в режиме реального времени. Все ещё непонятно, можно ли считать приобретённый в ходе обучения через фМРТ контроль над уровнем оксигенации первичным или вторичным эффектом – эпифеноменом. Статья, которую мы сегодня рассмотрим, как раз рассказывает о специфических психологических и нейропсихологических механизмах, которые могут стоять за подобным обучением.

Есть стимул – есть ответ

Прямое манипулирование активностью мозга связано с общими принципами так называемого оперантного научения, то есть коррекции проведения в ответ на меняющиеся стимулы окружающей среды. В этом случае поведение – это активность регионов мозга, выраженная через с помощью BOLD, а стимулом окружающей среды выступает обратная связь от фМРТ, которую может видеть испытуемый.

Нейронная активность хорошо поддаётся принципам классического и оперантного научения (Kandel and Schwartz, 1982). Исследования этого феномена начались ещё в шестидесятые. Недавно с помощью нейрокомпьютерных интерфейсов (НКИ) показали, что даже возможен контроль над отдельными клетками коры головного мозга – в частности, над нейронами моторных зон, причём, как у людей, так и у животных (Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Moritz et al., 2008).

С другой стороны, непонимание механизма такого контроля усложняет разработку и анализ качества методик фМРТ в режиме реального времени, предполагающих наличие обратной связи. Часть статей подчёркивает важность мысленного образа для обучения регуляции BOLD, тогда как другие говорят о том, что обязательно нужна обратная связь. Имеет значение и то, осознавали ли участники экспериментов, насколько важен для них исход и будет ли в случае успеха какое-либо материальное вознаграждение.

О чём говорит физиология?

Не зная того, что отвечает за подобный ответ, учёные не могут однозначно интерпретировать поведенческие изменения, связанные с метаболическим сигналом. Выявлены по крайней мере три механизма, регулирующих ток крови в сосудах головного мозга. Первый – церебральная авторегуляция (cerebral autoregulation), то есть способность нейроваскулярной системы поддерживать постоянство тока через адаптацию церебрального давления. Второй – нейрогенная регуляция (neurogenic regulation), которая модулирует мозговое кровообращение за счёт разветвлённой структуры околососудистых нервов. Третий – функциональная гиперемия, то есть увеличение тока крови к ткани, когда она активна (Peterson et al., 2011).

Астроциты и эндотелиальные клетки выполняют центральную роль во всех трёх механизмах (Iadecola and Nedergaard, 2007). Первые представляют собой фактор регуляции тока крови, а вторые – за счёт своей анатомической позиции, которая физически связывает нейроваскулярную систему с синапсами.

По-настоящему интригующий вопрос, затрагивающий фМРТ – это гипотеза о том, что регуляция активности нервной системы прямо зависит от изменений в метаболических сигналах, таких, как BOLD (Moore and Cao, 2008). В частности, показано, что нейроваскулярная система может прямо участвовать в обработке информации. Из этого следует, что гемодинамические процессы не только обеспечивают метаболический спрос активных нервных тканей, но и формируют некоторые процессы.

Так, саморегуляция метаболических процессов может вести к тому, что меняется активность некоторых групп нейронов. В это вписывается и эффект транскраниальной стимуляции постоянным током (tDCS), которую предлагали для того, чтобы улучшить функции мозга за счёт усиления метаболизма (Dutta, 2015; Pulgar, 2015).

Несмотря на растущее число гипотез относительно BOLD реакций механика процесса всё равно остаётся под сомнением. С помощью фМРТ показано, что они коррелируют с потенциалом локального поля (local field potential, Logothetis et al., 2001; Viswanathan and Freeman, 2007), с динамикой потенциалов действия (Heeger and Ress, 2002) и одновременно с двумя этими показателями. Кроме того, BOLD может отражать различные процессы нервной деятельности: нейромодуляцию, возбуждающую и подавляющую активность клеток, нисходящую и восходящую регуляцию (Viswanathan and Freeman, 2007; Logothetis, 2008; Lee et al., 2010).

В целом, результаты исследований показывают, что способность к усилению метаболического сигнала связана с возбуждения нервной системы. Однако, на основе результатов после перцептивных заданиях установлено, что чувствительность, увеличенная за счёт тренировок с фМРТ в реальном времени, ассоциирована скорее с комбинацией усиления активности одних зон и подавления активности других (Shibata et al., 2011).

Альтернативные методы, такие, как одновременное использование ЭЭГ и фМРТ в режиме реального времени, могут способствовать дальнейшему изучению причинно-следственных связей. Однако, исходя из предложенных возможных нейроваскулярных механизмов, можно предположить, что саморегуляция уровня оксигенации крови – не эпифеномен, а прямое последствие.

Текст: Мария Азанова

Ссылка на источник