Всё сочувствие, на которое мы решились
 

Ученые из Швеции создали первый органический электрохимический нейрон

Исследователи впервые представили искусственный нейрон на основе напечатанных на подложке электрохимических транзисторов.

Ученые из Швеции создали первый органический электрохимический нейрон

Электрохимический нейрон способен к обучению подобно реальным нейронам и смог интегрироваться с живым организмом, заставив венерину мухоловку захлопнуться в отсутствие добычи. Статья с результатами исследования опубликована в журнале Nature Communications.

Развитие исследований в области интерфейсов мозг-машина, носимой электроники и протезов нового поколения требует интеграции искусственных нейроморфных устройств с биологическими системами. Обычно в этих целях используют устройства на основе кремния, однако они имеют ряд недостатков: они, как правило, слишком жесткие, недостаточно биосовместимы, а принцип их работы сильно отличается от биологических принципов передачи сигнала. В качестве альтернативы шведские ученые предложили органические полупроводники, принцип действия которых куда больше похож на работу реальных нейронов.

Ранее эта же группа создала напечатанные на подложке биосовместимые электрохимические транзисторы. Они содержали в своем составе полимеры как p-типа, так и n-типа, то есть могли переносить как положительные, так и отрицательные заряды. Это позволило создать органические электрохимические транзисторы, которые можно было печатать на тонкой пластиковой фольге. Объединив ряд транзисторов в одну схему, ученые создали синтетические аналоги нейрона и синапса — места контакта двух нейронов.

Полученные искусственные нейроны функционировали при напряжении менее 0,6 В — это почти на порядок ниже напряжений, с которыми работали предыдущие аналоги, что создавало проблему при попытке интеграции с живыми организмами. Чтобы продемонстрировать функциональность созданного нейрона, ученые «подключили» к нему венерину мухоловку и успешно передали сигнал к закрытию ловчего аппарата, хотя добыча в него не попадалась. Наконец, авторы работы показали, что искусственный электрохимический синапс способен к обучению в соответствии с принципом Хебба, сформулированным для реальных нейронов: согласно этому правилу, одновременная активация нейронов укрепляет их синаптическую связь.

Таким образом, ученым удалось создать локализованные искусственные нейронные системы, которые можно интегрировать с биосигнальными системами растений, беспозвоночных и позвоночных животных. Они могут стать основой носимой электроники и интерфейсов мозг-компьютер нового поколения.

Автор: Мария Осетрова

Ссылка на источник